[Toán 10] chứng minh BDT

R

rainshine12

Last edited by a moderator:
R

rainshine12

[TEX]a+b+c+d = 4 a,b,c,d > 0[/TEX]
CM :
[TEX]\frac{a}{1+ b^2c} + \frac{b}{1+ c^2d} + \frac{c}{1+d^2a} + \frac{d}{1+ a^2b} \ge 2[/TEX]
 
Last edited by a moderator:
V

vodichhocmai

[TEX]a+b+c+d = 4 a,b,c,d > 0[/TEX]
CM :
[TEX]\frac{a}{1+ b^2c} + \frac{b}{1+ c^2d} + \frac{c}{1+d^2a} + \frac{d}{1+ a^2b} \ge 2[/TEX]

[TEX]\frac{a}{1+ b^2c} :=\frac{a\(1+b^2c-b^2c\)}{1+ b^2c} =a- \frac{ab^2c}{1+b^2c} \ge a- \frac{ab\sqrt{c}}{2}[/TEX]

[TEX]L\ge 4- \frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}[/TEX]

[TEX]\left{ ab+abc+bc+bcd+cd+cda+da+dab \ge 2\(ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}\) \\ab+bc+cd+da:=\(a+c\)\(d+b\)\le \frac{\(a+b+c+d\)^2}{4}\\abc+bcd+cda+dab=bc\(a+d\)+da\(c+d\)\le \frac{\(a+b+c+d\)^3}{16}[/TEX]

[TEX]\righ Done!![/TEX]
 
Top Bottom