cho [TEX]a,b,c[/TEX] dương, [TEX]a+b+c=1[/TEX]
CMR;
[TEX]ab+ac+bc - abc[/TEX]\leq[TEX]\frac{8}{27}[/TEX]
[TEX]\red f \(a,b,c\):= ab+ac+bc - abc=abc+\frac{7}{27} -\sum_{cyclic}\frac{\(b-c\)^2}{54}\[3\(b+c-a\)^2+4\(b^2+4bc+c^2\)\]\le \frac{8}{27}-\sum_{cyclic}\frac{\(b-c\)^2}{54}\[3\(b+c-a\)^2+4\(b^2+4bc+c^2\)\][/TEX]
[TEX]\blue abc\le \frac{\(a+b+c\)^3}{27}[/TEX]
cho [TEX]a,b,c[/TEX] dương, [TEX]a+b+c=1[/TEX]
CMR;
[TEX]ab+ac+bc - abc[/TEX]\leq[TEX]\frac{8}{27}[/TEX]
Do [TEX]\sum_{cyc}a\(a-c\)\(a-b\)\ge 0[/TEX]nên chúng ta có :
[TEX]9abc \ge \(a+b+c\)\[4\(ab+bc+ca-\(a+b+c\)^2\][/TEX]
[TEX]\righ 4\(ab+bc+ca\)-9abc \le 1[/TEX]
[TEX]\righ 4\(ab+bc+ca\)-4abc \le 1+5abc\le 1+5\frac{\(a+b+1\)^3}{27}=\frac{32}{27}[/TEX]
[TEX]\righ ab+bc+ca-abc \le \frac{8}{27}[/TEX]
cho [TEX]a,b,c[/TEX] dương, [TEX]a+b+c=1[/TEX][TEX]16abc[/TEX]\leq[TEX]a+b[/TEX]
[TEX]\frac{a+b}{abc}= \frac{\(a+b\)\(a+b+c\)}{abc}=16+\frac{\(a+b\)\(a+b-c\)^2+4c\(a-b\)^2}{abc}[/TEX]
cho [TEX]a,b,c[/TEX] dương, [TEX]a+b+c=1[/TEX][TEX]16abc[/TEX]\leq[TEX]a+b[/TEX]
[TEX]\frac{a+b}{abc}\ge \frac{1}{c}.\frac{4}{a+b}[/TEX]
[TEX]\righ \frac{a+b}{abc} \ge \frac{4}{c\(1-c\)}\ge 16[/TEX]