L
linh123658
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho a,b,c là 3 số thực dương. Chứng minh:
$\frac{(b+c)^2}{a(b+c+2a)}+\frac{(a+c)^2}{b(a+c+2b)}+\frac{(a+b)^2}{c(a+b+2c)}$ \geq $2(\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b})$
$\frac{(b+c)^2}{a(b+c+2a)}+\frac{(a+c)^2}{b(a+c+2b)}+\frac{(a+b)^2}{c(a+b+2c)}$ \geq $2(\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b})$