[Toán 10] BĐT Vectơ

M

moscavizt

Last edited by a moderator:
N

nttthn_97

Đề thế này phải k bạn
$\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}$[TEX]\geq[/TEX]$\sqrt{y^2+yz+z^2}$
Ta có
$x^2+xy+y^2=(x+\frac{y}{2})^2+(\frac{\sqrt{3}}{2}y)^2$
$x^2+xz+z^2=(x+\frac{z}{2})^2+(\frac{\sqrt{3}}{2}z)^2$
Đặt $\vec{a}=(x+\frac{y}{2};\frac{\sqrt{3}}{2}y)$
$\vec{b}=(-x-\frac{z}{2};\frac{\sqrt{3}}{2}z)$
$VT=|\vec{a}|+|\vec{b}|=\sqrt{(x+\frac{y}{2})^2+( \frac{\sqrt{3}}{2}y)^2}+\sqrt{(x+\frac{z}{2})^2+( \frac{\sqrt{3}}{2}z)^2}$
[TEX]\geq[/TEX]$|\vec{a}+\vec{b}|=\sqrt{(x+\frac{y}{2}-x-\frac{z}{2})^2+(\frac{\sqrt{3}}{2}y+\frac{\sqrt{3}}{2}z)^2}=\sqrt{y^2+yz+z^2}$
[TEX]\Rightarrow[/TEX]ĐPCM
 
Last edited by a moderator:
Top Bottom