ta có [TEX]x^3+y^2\geq 2 \sqrt{x^3.y^2}= 2xy \sqrt{x} [/TEX]
\Rightarrow [TEX] \frac{2\sqrt{x}}{x^3+y^2} \leq \frac{ 2 \sqrt{x}}{2xy \sqrt{x}} = \frac{ 1}{xy}[/TEX]
tương tự
[TEX] \frac{2 \sqrt{y}}{y^3+x^2}\leq \frac{1}{z}[/TEX]
[TEX] \frac{2 \sqrt{z}}{z^3+x^2} \leq \frac{1}{xz}[/TEX]
=>[TEX] \frac{2\sqrt{x}}{x^3+y^2}+\frac{2 \sqrt{y}}{y^3+x^2}+\frac{2 \sqrt{z}}{z^3+x^2}\leq \frac{ 1}{xy}+ \frac{1}{z} + \frac{1}{xz}[/TEX](1)
mặt khác [TEX] \frac{2}{xy} \leq \frac{1}{x^2}+ \frac{1}{y^2} [/TEX]
[TEX] \frac{2}{yz} \leq \frac{1}{y^2} + \frac{1}{z^2}[/TEX]
[TEX] \frac{2}{xz}\leq \frac{1}{x^2}+ \frac{1}{z^2}[/TEX]
=>[TEX]\frac{ 1}{xy}+ \frac{1}{z}+ \frac{1}{xz}\leq\frac{1}{x^2}+ \frac{1}{y^2}+ \frac{1}{z^2}[/TEX](2)
từ (1) và (2) => dpcm