Cho a, b, c > 0 và a+b+c=3
CMR: [TEX] \frac{1}{a^2} [/TEX] +[TEX] \frac{1}{b^2} [/TEX] +[TEX] \frac{1}{c^2} [/TEX] >= a^2 +b^2 +c^2
Giả sử rằng [TEX]a=\max\{a;b;c\}\righ a \in\[1;3\) [/TEX]
Nếu như [TEX]a\in \[ 1;1+\sqrt{2}\][/TEX] thì ta có :
[TEX]\ \ \ \ \ \ \ \ \frac{1}{a^2}- a^2 =4-4a+\frac{\(a-1\)^2\[2-(a-1)^2\]}{a^2}[/TEX]
do đó ta có :
[TEX]\ \ \ \ \ \ \ \ \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2 +12-4\(a+b+c\)[/TEX]
[TEX]\ \ \ \ \ \righ \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2[/TEX]
nếu như [TEX]a\in \[ 1+\sqrt{2};3\)[/TEX] thì ta có :[TEX]b+c\le 2-sqrt{2}[/TEX] nên ta có ;
[TEX]\ \ \ \ \ \ \left{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} \geq \frac{2}{bc}+\frac{1}{a^2} \ge \frac{8}{\(b+c\)^2} +\frac{1}{a^2}> 111+\frac{1}{a^2}\\ a^2+b^2+c^2< (b+c)^2+9 <15-2\sqrt{2}[/TEX][TEX]\righ \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}> a^2+b^2+c^2[/TEX]
[TEX]Done!![/TEX]
.....................Các 2...............................................
[TEX]\left{LHS\ge \frac{\(a+b+c\)\(a+b+c\)}{\(abc\)\(a+b+c\)}\ge \frac{27}{\(ab+bc+ca\)^2}\\ \(a^2+b^2+c^2\)\(ab+bc+ca\)^2\le \frac{\(a+b+c\)^6}{27}[/TEX]
[TEX]\righ DONE!![/TEX]