Giả thiết : [TEX]P=\frac{1}{(1+a)^3}+\frac{1}{(1+b)^3}+\frac{1}{(1+c)^3}[/TEX]
Ta có :
[TEX]\frac{1}{(1+a)^3}+\frac{1}{(1+a)^3}+\frac{1}{8} \geq \frac{3}{2}.\frac{1}{(1+a)^2}[/TEX]
[TEX]\frac{1}{(1+b)^3}+\frac{1}{(1+b)^3}+\frac{1}{8} \geq \frac{3}{2}.\frac{1}{(1+b)^2}[/TEX]
[TEX]\frac{2}{(1+c)^3}+\frac{1}{4}+\frac{1}{4} \geq \frac{3}{2}.\frac{1}{1+c}[/TEX]
Cộng theo vế :
[TEX]2P+\frac{3}{4} \geq \frac{3}{2}[\frac{1}{(1+a)^2}+\frac{1}{(1+b)^2}+\frac{1}{1+c}][/TEX]
Mà : [TEX]\frac{1}{(1+a)^2}+\frac{1}{(1+b)^2} \geq \frac{1}{1+ab}=\frac{c}{1+c} \ (do \ abc=1)[/TEX]
Vậy : [TEX]2P+\frac{3}{4} \geq \frac{3}{2}(\frac{c}{1+c}+\frac{1}{1+c})=\frac{3}{2}[/TEX]
[TEX]==> P \geq \frac{3}{8}[/TEX]:khi (126):