Theo [TEX]Cauchy-Schwarz:[/TEX]
[TEX]\frac{16}{2+x+yz} =\frac{(1+1+2)^2}{2+\frac{yz}{2}+\left(x+\frac{yz}{2}\right)} \leq \frac{1}{2}+\frac{1}{\frac{yz}{2}}+ \frac{4}{x+ \frac{yz}{2}}=\frac{1}{2}+\frac{2}{yz}+\frac{8}{2x+yz}[/TEX]
-Mặt khác, theo Cauchy:
[TEX]\frac{8}{2x+yz} \leq \frac{4}{\sqrt{2xyz}}=\frac{2\sqrt{2}}{\sqrt{xyz}}[/TEX]
Suy ra: [TEX]\frac{1}{2+x+yz} \leq \frac{1}{16}\left(\frac{1}{2}+\frac{2}{yz}+\frac{2\sqrt{2}}{\sqrt{xyz}}\right)[/TEX]
Cộng các bt tương tự lại, ta được:
[TEX]P \leq \frac{1}{16}\left[\frac{3}{2}+2\left(\frac{1}{yz}+\frac{1}{zx}+\frac{1}{xy}\right)+\frac{6\sqrt{2}}{\sqrt{xyz}}\right] =\frac{1}{16}\left(3 +\frac{6\sqrt{2}}{\sqrt{xyz}}\right)[/TEX]
Tuy nhiên: [TEX]3xyz=4(x+y+z) \geq 12\sqrt[3]{xyz}[/TEX]
[TEX]\Rightarrow xyz \geq 8[/TEX]
Vậy ta thu được kết quả: [TEX]P \leq \frac{1}{16}\left(3 +\frac{6\sqrt{2}}{\sqrt{8}}\right) =\frac{3}{8}[/TEX]
Đẳng thức xảy ra [TEX]\Leftrightarrow x=y=z=2[/TEX]