[toán 10] bất đt

A

angel_small

Last edited by a moderator:
B

bboy114crew

Cho [TEX]a,b,c \geq 0 ;a^2+b^2+c^2= 3[/TEX] .Cmr

[TEX]\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3} \leq 1/2[/TEX]
Theo AM-GM ta có:
[TEX]a^2+2b+3=a^2+1+2b+2\geq 2(a+b+1)[/TEX]
\Rightarrow[TEX]VT \leq \frac{1}{2}(\sum \frac{1}{a+b+1})[/TEX]
[TEX]\Rightarrow \frac{3}{2}-P \geq \sum \frac{b+1}{a+b+1}[/TEX]
Theo Cauchy-schwarz:
[TEX]\sum \frac{b+1}{a+b+1} =\sum \frac{(b+1)^2}{(b+1)(a+b+1)}[/TEX]
[TEX]\geq \frac{(a+b+c+3)^2}{\sum (b+1)(a+b+1)}[/TEX]
[TEX]=\frac{(a+b+c+3)^2}{\sum a^2+\sum ab+3(a+b+c)+3}[/TEX]
[TEX]=\frac{(a+b+c+3)^2}{\frac{1}{2}(\sum a^2)+\sum ab+3(a+b+c)+\frac{9}{2}}[/TEX]
[TEX]=\frac{(a+b+c+3)^2}{\frac{1}{2}(a+b+c+3)^2}[/TEX]
\Rightarrow Q.E.D
 
Top Bottom