[toán 10] bất đẳng thức

L

leminhnghia1

Giải:

1, Theo bất đẳng thức svacxơ:

$\sum \dfrac{a^2}{b+c} \ge \dfrac{(a+b+c)^2}{2(a+b+c)}=\dfrac{a+b+c}{2}= \dfrac{3}{2}$


Dấu "=" $\iff a=b=c=1$

2, $\dfrac{2a^3}{a^2+ab+b^2}=\dfrac{(a^3-b^3)+(a^3+b^3)}{a^2+ab+b^2}\\ a-b+\dfrac{(a+b)(a^2-ab+b^2)}{a^2+ab+b^2} \ge a-b+\dfrac{a+b}{3}=\dfrac{4a-2b}{3}\\ \rightarrow \dfrac{a^3}{a^2+ab+b^2} \ge \dfrac{2a-b}{3}$

Dấu "=" $\iff a=b=c=1$
 
  • Like
Reactions: leminhnghia1
Top Bottom