[Toán 10] Bất đẳng thức

V

vy000

1:

$\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}$

$=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ba}+\dfrac{c^4}{ca+cb}$

$\ge \dfrac{(a^2+b^2+c^2)^2}{2(ab+bc+ca)}$

$\ge \dfrac{(ab+bc+ca)(a+b+c)^2}{6(ab+bc+ca)}$

$\ge 6$

2: C1:

Có:

$25\dfrac{a^5}{b^3}+15\dfrac{b^5}{c^3}+9\dfrac{c^5}{a^3}$

$\ge 49 \ \ \ \sqrt[\LARGE 49]{\dfrac{a^{5.25}b^{5.15}c^{9.5}}{b^{3.25}c^{3.15}a^{3.9}}}=a^2$

Tương tự ...

C2:

$\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2 \ge \sqrt[5]{a^{10}}=a62$
tương tự ...
 
Last edited by a moderator:
Top Bottom