[Toán 10] bất đẳng thức

H

hn3

Do [TEX]x>0 \ ; \ y>0 \ ; \ x+y=2010[/TEX]

[TEX]==>\ \sqrt{x}+\sqrt{y} \leq 2\sqrt{1005}[/TEX]

và [TEX]\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}} \geq \frac{2}{\sqrt[4]{xy}} \geq \frac{2}{\sqrt{1005}}=\frac{2\sqrt{1005}}{1005}[/TEX]

[TEX]==>\ P=\frac{x}{\sqrt{2010-x}}+\frac{y}{\sqrt{2010-y}}=\frac{2010-y}{\sqrt{y}}+\frac{2010-x}{\sqrt{x}}[/TEX]

[TEX]P=2010(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}})-(\sqrt{x}+\sqrt{y}) \geq \frac{2010.2.\sqrt{1005}}{1005}-2\sqrt{1005}=2\sqrt{1005}[/TEX]

[TEX]==>\ {GTNN_P}=2\sqrt{1005}[/TEX] . Dấu bằng khi [TEX]\sqrt{x}=\sqrt{y} \ <=> \ x=y=1005[/TEX]
:|
 
Last edited by a moderator:
Top Bottom