[Toán 10]Bất đẳng thức hihi

R

rua_it

[tex]x \geq y \geq z \geq 0[/tex]

[tex]\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y} \geq x^2+y^2+z^2[/tex]
[tex]Cauchy-Schwarz \rightarrow (\sum \frac{x^2y}{z}).(\sum \frac{x^2z}{y}) \geq (\sum x^2)^2(1)[/tex]

[tex](gt) \rightarrow \sum \frac{x^2y}{z}-\sum \frac{x^2z}{y} \geq \frac{(x-y).(y-z).(x-z).(\sum xy)}{xyz} \geq 0(2)[/tex]

[tex](1)&(2) \rightarrow (\sum \frac{x^2y}{z})^2 \geq (\sum \frac{x^2y}{z}).(\sum \frac{x^2z}{y}) \geq (\sum x^2)^2[/tex]

[tex]\rightarrow dpcm.[/tex]
 
Top Bottom