[Toán 10]Ai giúp mình với cần gấp này

D

duynhan1

[TEX]a,b,c >0; a^2+b^2+c^2=1. Min P= \frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a}[/TEX]

[TEX]P^2 = \frac{a^2b^2}{c^2} + \frac{a^2c^2}{b^2} + \frac{b^2c^2}{a^2} + 2(a^2+b^2+c^2) [/TEX]

Cauchy:

[TEX]\frac{a^2b^2}{c^2} + \frac{a^2c^2}{b^2} \geq 2a^2 [/TEX]

[TEX] \frac{a^2c^2}{b^2} + \frac{b^2c^2}{a^2} \geq 2c^2 [/TEX]

[TEX] \frac{a^2b^2}{c^2} + \frac{b^2c^2}{a^2} \geq 2b^2 [/TEX]

[TEX] \Rightarrow \frac{a^2b^2}{c^2} + \frac{a^2c^2}{b^2} + \frac{b^2c^2}{a^2} \geq a^2 + b^2 + c^2[/TEX]

[TEX]\Rightarrow P^2 \geq 3(a^2+b^2+c^2) =3[/TEX]

[TEX]Min P = \sqrt{3}[/TEX]
 
Last edited by a moderator:
Top Bottom