Toán 9 Tổ hợp

_Error404_

Học sinh chăm học
Thành viên
20 Tháng hai 2020
333
312
76
17
Hà Tĩnh
THCS Lê Văn Thiêm
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1654161402529.png
Mọi người cho e hỏi cách làm toán tổ hợp kiểu chứng minh tồn tại 1 cấu hình nào đó thỏa mãn như bài trên được ko ạ :))))
Tiện thể e xin thêm tài liệu hay chuyên đề của ba dạng bài nữa đó là:
1. Cực trị tổ hợp
VD: Cần lấy ít nhất bao nhiêu số trong 20 số nguyên dương đầu tiên sao cho tồn tại 2 số có tổng là snt (đây là VD đơn giản thôi chứ còn nhiều bài khó lắm ak)
2: Toán tổ hợp có liên quan đến tập số tự nhiên
VD: Tô màu tất cả các số nguyên dương bằng hai màu trắng và đen. Biết rằng tổng của hai số khác màu là một số tô màu đen và có vô hạn số tô màu trắng. Gọi q là số nguyên dương nhỏ nhất lớn hơn 1 tô màu đen. Chứng minh q là số nguyên tố
3: Lưới ô vuông và điểm nguyên
@Mộc Nhãn @kido2006
 
Last edited:
  • Like
Reactions: 7 1 2 5

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,478
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
View attachment 210412
Mọi người cho e hỏi cách làm toán tổ hợp kiểu chứng minh tồn tại 1 cấu hình nào đó thỏa mãn như bài trên được ko ạ :))))
Tiện thể e xin thêm tài liệu hay chuyên đề của ba dạng bài nữa đó là:
1. Cực trị tổ hợp
VD: Cần lấy ít nhất bao nhiêu số trong 20 số nguyên dương đầu tiên sao cho tổng 2 số bất kì là snt (đây là VD đơn giản thôi chứ còn nhiều bài khó lắm ak)
2: Toán tổ hợp có liên quan đến tập số tự nhiên
VD: Tô màu tất cả các số nguyên dương bằng hai màu trắng và đen. Biết rằng tổng của hai số khác màu là một số tô màu đen và có vô hạn số tô màu trắng. Gọi q là số nguyên dương nhỏ nhất lớn hơn 1 tô màu đen. Chứng minh q là số nguyên tố
3: Lưới ô vuông và điểm nguyên
@Mộc Nhãn @kido2006
Nguyễn Phúc LươngVới dạng bài chứng minh như thế thì có một cách khá phổ biến đối với lớp 9 là "nửa bất biến".
Ta sẽ xây dựng một đại lượng, và sau mỗi thao tác/quy tắc thì đại lượng đó không tăng hoặc không giảm (thường thì sẽ tăng hoặc giảm hẳn), thì gọi là nửa bất biến nhé.
Nếu ta chứng minh đại lượng đó bị chặn trên (nhỏ hơn số nào đó) và không giảm thì số lần thực hiện thao tác sẽ hữu hạn.
Về nguyên lý của phương pháp thì nó như vậy nhé.
 
Top Bottom