so hang tong quat
[TEX] \frac{2^{k+1}-1}{k+1}.C_n^k = \frac{2^{k+1}-1}{k+1}.\frac{n!}{k!(n-k)!}[/TEX] =
[TEX] =(2^{k+1}-1).\frac{1}{n+1}.C_{n+1}^{k+1}[/TEX]
thay [TEX]k= 0 :C_n^0 = (2-1).\frac{1}{n+1} C_{n+1}^1[/TEX]
[TEX]k=1 : \frac{2^2-1}{2}C_n^2=(2^2-1)\frac{1}{n+1}.C_{n+1}^2[/TEX]
[TEX]..................[/TEX]
[TEX] k=n : \frac{(2^{n+1}-1}{n+1}.C_n^n = (2^{k+1}-1).\frac{1}{n+1}C_{n+1}^{n+1}[/TEX]
cong ve' voi' ve' ta dc:
[TEX]S_n =(2-1).\frac{1}{n+1} C_{n+1}^1+(2^2-1)\frac{1}{n+1}.C_{n+1}^2+.....+(2^{k+1}-1).\frac{1}{n+1}C_{n+1}^{n+1}[/TEX]
[TEX]=\frac{1}{n+1}(C_{n+1}^0+2.C_{n+1}^1+2^2.C_{n+1}^2+....+2^{n+1}.C_{n+1}^{n+1}) -[/TEX][TEX]\frac{1}{n+1}( C_{n+1}^0 + C_{n+1}^1+ C_{n+1}^2+....+ C_{n+1}^{n+1})[/TEX]=
[TEX]= \frac{1}{n+1}(3^n-2^n)[/TEX]!!!
bai nay co the giai bang tich phan va dao ham`, nhung tui jai cach nay vi cach nay kha de~ va co the jai dc kha nhieu bai trong thi dh voi thoi jan ngan, cach lam ko pai suy ngi, xhi vit' lam sao cho nhanh la dc!