[tổ hợp] 12

V

vodichhocmai

Tính:
[TEX] \red S=2.2^{20}C_{20}^{0}+\frac{3}{2}2^{19}(3^2-2^2)C_{20}^{1}+\frac{4}{3}.2^{18}.(3^3-2^3)C_{20}^{2}+....+\frac{22}{21}.(3^{21}-2^{21})C_{20}^{20}[/TEX]

[TEX]\blue S:=\sum_{k=0}^{20} \frac{k+2}{k+1}C_{20}^k \(3^{k+1}-2^{k+1}\)2^{20-k}[/TEX]

[TEX]\blue S:=\sum_{k=0}^{20} C_{20}^k \(3^{k+1}-2^{k+1}\)2^{20-k} +\sum_{k=0}^{20} \frac{1}{k+1}C_{20}^k \(3^{k+1}-2^{k+1}\)2^{20-k}[/TEX]

[TEX]\blue S:=\sum_{k=0}^{20} C_{20}^k \(3^{k+1}2^{20-k}\)-\sum_{k=0}^{20} C_{20}^k2^{k+1}2^{20-k} +\sum_{k=0}^{20}\( \frac{1}{k+1}C_{20}^k \(3^{k+1}-2^{k+1}\)2^{20-k}\)[/TEX]

[TEX]\blue S:= 3.5^{20}-2.4^{20}+\int_{2}^{3}\(2+x\)^{20}dx= 3.5^{20}-2.4^{20}+\frac{5^{21}-4^{21}}{21}[/TEX]
 
Last edited by a moderator:
Top Bottom