tinhP= 1/(1*3*5*7)+1/(3*5*7*9)+...+1/((2n-1)(2n+1)(2n+3)(2n+5))

V

vansang02121998

Có $\dfrac{1}{48}(\dfrac{1}{2x-1}-\dfrac{3}{2x+1}+\dfrac{3}{2x+3}-\dfrac{1}{2x+5})=\dfrac{1}{(2x-1)(2x+1)(2x+3)(2x+5)}$

$\Rightarrow P=\dfrac{1}{48}[(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{2n-1})-3(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n+1})+3(\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{2n+3})-(\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{2n+5})]$

$\Leftrightarrow P=\dfrac{1}{48}[(1+\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{2n+1}-\dfrac{1}{2n+3}-\dfrac{1}{2n+5})-3(\dfrac{1}{3}-\dfrac{1}{2n+3})]$

$\Leftrightarrow P=\dfrac{4n^3+18n^2+23n}{45(2n+1)(2n+3)(2n+5)}$
 
Top Bottom