Ta cần chứng minh: Với $a+b+c=0$ thì $\sqrt{\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}}=\left |\dfrac1a+\dfrac1b+\dfrac1c\right|$
Ta có:
$\left ( \dfrac1a +\dfrac1b + \dfrac1c \right )^2=\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}+2\left ( \dfrac1{ab}+\dfrac1{bc}+\dfrac1{ca} \right )=\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}+2\left ( \dfrac{a+b+c}{abc} \right )$
Mà $a+b+c=0\Rightarrow \left ( \dfrac1a +\dfrac1b + \dfrac1c \right )^2=\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}$
$\Rightarrow \sqrt{\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}}=\sqrt{\left ( \dfrac1a +\dfrac1b + \dfrac1c \right )^2}=\left |\dfrac1a+\dfrac1b+\dfrac1c\right|$
Áp dụng:
$\sqrt{1+\dfrac1{1^2}+\dfrac1{2^2}}=\sqrt{1+\dfrac1{1^2}+\dfrac1{(-2)^2}}=\left | 1+1-\dfrac12 \right |\\...$