..........Tính

L

luuthikhanhhuyen

[TEX]\sqrt[3]{2+\sqrt[2]{5}} + \sqrt[3]{2-\sqrt[2]{5}[/TEX]
đặt A=[TEX]\sqrt[3]{2+\sqrt[2]{5}} + \sqrt[3]{2-\sqrt[2]{5} [/TEX]
\Rightarrow [TEX]{A}^{3}[/TEX] = {[TEX]\sqrt[3]{2+\sqrt[2]{5}} + \sqrt[3]{2-\sqrt[2]{5}[/TEX]}^{3}
đặt a= [TEX]\sqrt[3]{2+\sqrt[2]{5}}[/TEX]
b = [TEX] \sqrt[3]{2-\sqrt[2]{5}[/TEX]
ta có:
[TEX]{A}^{3}= {a}^{3}+ 3{a}^{2}b +3{b}^{2}a +{b}^{3} = {a}^{3}+{b}^{3} +3ab*(a+b)[/TEX]
từ trên, tính ra ta đuợc:
[TEX]{A}^{3}= 4- 3A[/TEX]
\Leftrightarrow [TEX]{A}^{3} +3A -4=0[/TEX]
\Leftrightarrow [TEX](A-1)( {A}^{2} +A+ 4)= 0[/TEX]
vì [TEX]{A}^{2} +A+ 4[/TEX] \geq [TEX]\frac{15}{4}[/TEX] \forall A thựôc R
\Rightarrow A-1 = 0 \Rightarrow A = 1
vvậy [TEX]\sqrt[3]{2+\sqrt[2]{5}} + \sqrt[3]{2-\sqrt[2]{5}[/TEX]= 1
 
Last edited by a moderator:
0

01263812493

Tính
[TEX]A=\sqrt{1+2010^2 +\frac{2010^2}{2011^2} } [/tex] [TEX]+\frac {2010}{2011} [/tex]

Chú ý rằng : Vs [TEX]x > -1[/TEX]
[TEX]\sqrt{1+x^2+ \frac{x^2}{(x+1)^2}}+ \frac{x}{x+1}[/TEX]
[TEX]=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{(x+1)^2}}+ \frac{x}{x+1}=\sqrt{ \frac{(x^2+x+1)^2}{(x+1)^2}}+ \frac{x}{x+1}[/TEX]
[TEX]=\frac{x^2+x+1}{x+1}+ \frac{x}{x+1}=x+1 \Rightarrow A=2011[/TEX]
 
D

daodung28

chú ý rằng:
[TEX]\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2[/TEX] với a+b+c=0
áp dụng ta có:
[TEX]A=2010\sqrt{\frac{1}{2010^2}+\frac{1}{1^2}+\frac{1}{2011^2}}+\frac{2010}{2011}[/TEX]
[TEX]=2010\sqrt{\frac{1}{2010^2}+\frac{1}{1^2}+\frac{1}{(-2011)^2}}+\frac{2010}{2011}[/TEX]
[TEX]=2010\sqrt{(\frac{1}{2010}+\frac{1}{1}-\frac{1}{2011})^2}+\frac{2010}{2011}[/TEX]
[TEX]=2010(\frac{2011}{2010}-\frac{1}{2011})+\frac{2010}{2011}[/TEX]
[TEX]=2011[/TEX]
 
Last edited by a moderator:
Top Bottom