Tính và rút gọn

R

ronaldover7


a/ $\sqrt{2-\sqrt{3}}$ + $\sqrt{2+\sqrt{3}}$



a/A= $\sqrt{2-\sqrt{3}}$ + $\sqrt{2+\sqrt{3}}$
\Rightarrow
$A^2= 2-\sqrt{3} +2+\sqrt{3}+(2-\sqrt{3})(2+\sqrt{3})=4+4-3=5$
\Rightarrow $A=\sqrt{5}$
 
T

transformers123

c/ $\dfrac{\sqrt{x^2+10x+25}}{x-5}=\dfrac{\sqrt{(x-5)^2}}{x-5}=\dfrac{\sqrt{|x-5|}}{x-5}$
$\Longrightarrow \dfrac{\sqrt{x^2+10x+25}}{x-5} = 1$ hoặc $\dfrac{\sqrt{x^2+10x+25}}{x-5}=-1$
 
Last edited by a moderator:
R

ronaldover7

b/ $\sqrt{8+3\sqrt{7}}$ - $\sqrt{8-3\sqrt{7}}$
c/ $\frac{\sqrt{x^2-10x+25}}{x-5}$
B /Làm tương tự a
c/ $\frac{\sqrt{x^2-10x+25}}{x-5}$=$\frac{\sqrt{(x-5)^2}}{x-5}$= $\frac{|x-5|}{x-5}$
.Nếu x > 5 \Rightarrow $\frac{|x-5|}{x-5}=1$
.Nếu x < 5 \Rightarrow $\frac{|x-5|}{x-5}=-1$
 
T

toiyeu9a3

b, $B.\sqrt{2} = \sqrt{ 16 + 6\sqrt{7}} - \sqrt{ 16 - 6\sqrt{7}}$
= $ 3 + \sqrt{7} - 3 + \sqrt{7}$
= $2\sqrt{7}$
 
Top Bottom