Đặt [tex]a=\sqrt{5+\sqrt{3}}+\sqrt{5-\sqrt{3}}\Rightarrow a^2=5+\sqrt{3}+5-\sqrt{3}+2\sqrt{(5-\sqrt{3})(5+\sqrt{3})}=10+2\sqrt{25-3}=10+2\sqrt{22}=2(5+\sqrt{22})\Rightarrow a=\sqrt{2}.\sqrt{5+\sqrt{11}}[/tex]
Lại có: [tex]\sqrt{11-6\sqrt{2}}=\sqrt{(3-\sqrt{2})^2}=3-\sqrt{2}[/tex]
Từ đó [tex]P=\sqrt{2}+3-\sqrt{2}=3[/tex]