Theo mình thì làm thế này, không biết đúng không.
[TEX]I=\int_{0}^{\frac{\pi}{2}}\frac{sin^{2014}x}{sin^{2014}x+cos^{2014}x}dx[/TEX] (1)
Đặt $x=\dfrac{\pi}{2}-t$ khi đó $dx=-dt$
[TEX]I=-\int_{\frac{\pi}{2}}^{0}\frac{sin^{2014}(\frac{\pi}{2}-t)}{sin^{2014}(\frac{\pi}{2}-t)+cos^{2014}(\frac{\pi}{2}-t)}dt[/TEX]
[TEX]=\int_{0}^{\frac{\pi}{2}}\frac{cos^{2014}t}{sin^{2014}t+cos^{2014}t}dt[/TEX]
[TEX]=\int_{0}^{\frac{\pi}{2}}\frac{cos^{2014}x}{sin^{2014}x+cos^{2014}x}dx[/TEX] (2)
Cộng (1), (2) theo vế:
[TEX]2I=\int_{0}^{\frac{\pi}{2}}dx=\frac{\pi}{2}[/TEX]
Vậy [TEX]I=\frac{\pi}{4}[/TEX]