Tính tích phân

N

nguyenbahiep1

[TEX]C=\int_{0}^{1} \frac{x^3}{x^4+x^2+1}[/TEX]

$C=\int_{0}^{1} \frac{x^2.xdx}{x^4+x^2+1} \\ \\ x^2 = u \Rightarrow 2xdx = du \\ \\ C = \frac{1}{2}\int_{0}^{1} \frac{udu}{u^2+u+1} = \frac{1}{2}\int_{0}^{1}(\frac{u+\frac{1}{2}}{u^2+u+1}- \frac{\frac{1}{2}}{u^2+u+1})du \\ \\ C = \frac{1}{4}( \int_{0}^{1}\frac{2u+1}{u^2+u+1}du - \int_{0}^{1}\frac{du}{u^2+u+1}) \\ \\ C = \frac{1}{4}(I_1-I_2) \\ \\ I_1 = ln|u^2+u+1| \big|_0^1 \\ \\ I_2 : \int_{0}^{1}\frac{du}{u^2+u+1} = \int_{0}^{1}\frac{du}{(u+\frac{1}{2})^2+(\frac{ \sqrt{3} }{2})^2} \\ \\ u+ \frac{1}{2} = \frac{\sqrt{3}}{2}tant$
 
Top Bottom