tính tích phân

T

trantien.hocmai

ta giải như sau
đặt $t=\frac{\pi}{2}-x ->dt=-dx ->dx=-dt$
đổi cận
$x=0 ->t=\frac{\pi}{2}$
$x=\frac{\pi}{2} ->t=0$
ta có
$ I= - \int_{\frac{\pi}{2}}^o \frac{(sin(\frac{\pi}{2}-t))^{2004}}{(sin(\frac{\pi}{2}-t))^{2004}+(cos(\frac{\pi}{2}-t))^{2004}}dt $
$=\int_0^{\frac{\pi}{2}} \frac{cos^{2004}t}{sin^{2004}t+cos^{2004}t}dt$
$=\int_0^{\frac{\pi}{2}} \frac{cos^{2004}x}{sin^{2004}x+cos^{2004}x}dx$
lấy cái đề cộng cái này là xong nhá
 
M

meocon_113

1,[tex]\int\limits_{1}^{\sqrt{3}}\frac{1}{x^2(x^2+1)}dx[/tex]




2,[tex]\int\limits_{0}^{\pi/3}\frac{x.sin^2x}{sin2x.cos^2x}dx[/tex]
 
N

nghichthuyhan599

1,[tex]\int\limits_{1}^{\sqrt{3}}\frac{1}{x^2(x^2+1)}dx[/tex]
[tex]\int {\frac{{dx}}{{{x^2}({x^2} + 1)}}} = \int {\frac{{({x^2} + 1 - {x^2})dx}}{{{x^2}({x^2} + 1)}}} [/tex]
[tex] = \int {\frac{{dx}}{{{x^2}}}} - \int {\frac{{(x + 1 - x)dx}}{{{x^2} + 1}}} [/tex]
[tex] = \int {\frac{{dx}}{{{x^2}}}} - \int {\frac{{(x + 1)d(x + 1)}}{{{{(x + 1)}^2} + 1}}} + \int {\frac{{xdx}}{{{x^2} + 1}}} [/tex]
[tex] = - \frac{1}{x} - \frac{1}{2}\ln \left| {{{(x + 1)}^2} + 1} \right| + \frac{1}{2}\ln \left| {{x^2} + 1} \right|[/tex]
[tex] = - \frac{1}{x} - \frac{1}{2}\ln \left| {\frac{{{{(x + 1)}^2} + 1}}{{{x^2} + 1}}} \right|[/tex]
 
Top Bottom