Tính tích phân

P

ps2a

Last edited by a moderator:
N

nguyenbahiep1

2. [tex]\int\limits_{2}^{6}\frac{1}{2x+1+\sqrt{4x+1}}dx[/tex]

Giải

[laTEX]I = \int_{2}^{6} \frac{dx}{2x+1+\sqrt{4x+1}} \\ \\ u = \sqrt{4x+1} \Rightarrow u^2 = 4x+1 \\ \\ x = \frac{u^2-1}{4} \Rightarrow dx = \frac{udu}{2} \\ \\ I = \int_{3}^{5} \frac{udu}{2.(\frac{u^2-1}{2}+1+u)} \\ \\ I = \int_{3}^{5} \frac{udu}{u^2-1+2+2u)} \\ \\ I = \int_{3}^{5} \frac{udu}{u^2+2u+1} = \int_{3}^{5} \frac{udu}{(u+1)^2} \\ \\ I = \int_{3}^{5} \frac{du}{u+1} - \int_{3}^{5} \frac{du}{(u+1)^2}[/laTEX]
 
N

nguyenbahiep1

3. [tex]\int\limits_{ln2}^{ln5}\frac{1}{17e^x\sqrt{e^x-1}}dx[/tex]

Giải

[laTEX]\int_{ln2}^{ln5}\frac{e^x.dx}{17e^{2x}\sqrt{e^x-1}} \\ \\ \sqrt{e^x-1} = u \Rightarrow u^2 +1 = e^x \Rightarrow e^x.dx = 2udu \\ \\ I = \int_{1}^{2}\frac{2udu}{17(u^2+1)^2.u}\\ \\ I = \int_{1}^{2}\frac{2du}{17(u^2+1)^2} \\ \\ u = tan t [/laTEX]
 
Top Bottom