1) [TEX]\int_{1}^{\frac{\pi}{2}} ln(sinx)[/TEX]
[TEX]{\color{Blue} I=\int ln(sinx)dx=\int ln(cosx)dx \Rightarrow 2I=I+I=(\int lnsin2xdx-\int ln2dx)[/TEX]
Ta chứng minh [TEX]{\color{Blue} \int lnsin2xdx=\int lnsinxdx[/TEX]
Thật vậy: [TEX]{\color{Blue} \int lnsin2xdx\overset{t=2x}=\frac{1}{2}.\int lnsinxdx[/TEX]
[TEX]{\color{Blue} \int lnsinxdx=\int lnsinxdx+\int lnsinxdx[/TEX]
[TEX]{\color{Blue} \int lnsinxdx\overset{u=\pi -x}=lnsinxdx=I[/TEX]
Suy ra [TEX]{\color{Blue} \int lnsinxdx=\int lnsinxdx+\int lnsinxdx=I+I=2I[/TEX]
Do đó ta có: [TEX]{\color{Blue} 2I=\frac{1}{2}.2I-\int ln2dx
\Rightarrow I=\frac{-\pi ln2}{2}[/TEX]
2) [TEX] \int_{0}^{1}\frac{dx}{(1+x^n)\sqrt[n]{1+x^n}}[/TEX]
[TEX]{\color{Blue} \huge \int_{0}^{1}\frac{1}{(1+x^ ).\sqrt[ n]{(1+x^n)}}dx[/TEX]
[TEX]{\color{Blue} f(x)=\frac{1}{(1+x^n).\sqrt[n]{(1+x^n)}}=\frac{1}{\sqrt[n]{\(1+x^n\)^n}.\sqrt[n]{(1+x^n)}}[/TEX]
[TEX]{\color{Blue} =\frac{1}{\sqrt[n]{\(1+x^n\)^2}.\sqrt[n]{\(1+x^n\)^{n-2}}.\sqrt[n]{(1+x^n)}} [/TEX]
[TEX]{\color{Blue} =\frac{1}{\sqrt[n]{\(1+x^n\)^2}.\sqrt[n]{(1+x^n)^{n-1}}} [/TEX]
[TEX]{\color{Blue} =\frac{1}{ \sqrt[n]{\(1+x^n\)^2}}\[\frac{\(1+x^n\)-x^n}{\sqrt[n]{(1+x^n)^{n-1}}} \][/TEX]
[TEX]{\color{Blue} =\frac{1}{ \sqrt[n]{\(1+x^n\)^2}}\[\sqrt[n]{1+x^n}-x^n\(1+x^n\)^{\frac{1}{n}-1}\] [/TEX]
[TEX]{\color{Blue} =\frac{1}{ \sqrt[n]{\(1+x^n\)^2}}\[\sqrt[n]{1+x^n} -\frac{x}{n}\(1+x^n\)^{\frac{1}{n}-1}.n.x^{n-1}\] [/TEX]
[TEX]{\color{Blue} = \frac{1}{ \sqrt[n]{\(1+x^n\)^2}}\[\ \(x\)'\sqrt[n]{1+x^n}-x.\(\sqrt[n]{1+x^n}\)'\] [/TEX]
[TEX]{\color{Blue} \Rightarrow F(x)=\frac{x}{\sqrt[n]{1+x^n}}+C[/TEX]
[TEX]{\color{Blue} \Rightarrow \int_{0}^{1}\frac{1}{(1+x^n).\sqrt[n]{(1+x^n)}}dx=\frac{x}{\sqrt[n]{1+x^n}}\|_{0}^{1}=\frac{1}{\sqrt[n]{2}}[/TEX]
3)[TEX] \int_{0}^{\frac{\pi}{2}} ln \frac{{{(1+sinx)}}^{1+cosx}}{1+cosx} dx[/TEX]
[TEX]{\color{Blue} I = \int_{0}^{\frac{\pi }{2}}ln\frac{({1+sinx})^{1+cosx}}{1+cosx}dx= \int_{0}^{\frac{\pi }{2}}(1+cosx)ln(1+sinx)dx - \int_{0}^{\frac{\pi }{2}}ln(1+cosx)dx = I(1)-I(2)[/tex]
Trong I(1) đặt [TEX]{\color{Blue} x= \frac{\pi }{2}-t [/tex], ta có :
[TEX]{\color{Blue} I(1)= -\int_{\frac{\pi }{2}}^{0}(1+sint)ln(1+cost)dt=\int_{0}^{\frac{\pi }{2}}ln(1+cost)dt + \int_{0}^{\frac{\pi }{2}}sint.ln(1+cost)dt[/TEX]
Tức là[TEX]{\color{Blue} I(1) = I(2) - \int_{0}^{\frac{\pi }{2}}ln(1+cost)d(1+cost)= I(2) - \int_{2}^{1}lnz.dz [/TEX]( đặt z= 1+cost )
tính tích phân từng phần [TEX]{\color{Blue} \int_{2}^{1}lnz.dz [/TEX]ta đc :
[TEX] {\color{Blue} - \int_{2}^{1}lnz.dz = 2ln2 -1[/TEX]
Vậy [TEX]{\color{Blue} I(1) = I(2) + 2ln2 - 1[/TEX]
Từ đó suy ra [TEX]{\color{Blue} I = I(1)-I(2) = 2ln2 -1 = ln\frac{4}{e}[/TEX]
LATEX == mệt...phù.phù..............