[laTEX]I = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}}\frac{x(sinx+1) + sin^2x}{(1+sinx)sin^2x}dx \\ \\ I = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}}\frac{x}{sin^2x}dx + \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}}\frac{dx}{1+sinx} = I_1+I_2 \\ \\ I_1 : u = x \Rightarrow du = dx \\ \\ dv = \frac{1}{sin^2x} \Rightarrow v = -cotx \\ \\ I_2 : 1+sinx = (sin\frac{x}{2} + cos\frac{x}{2} )^2 \\ \\ I_2 = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}}\frac{dx}{cos^2(\frac{x}{2}) ( tan(\frac{x}{2}) + 1)^2} \\ \\ tan (\frac{x}{2}) + 1 = u \Rightarrow du = \frac{dx}{2cos^2(\frac{x}{2})}[/laTEX]