Gọi G là trọng tâm tg
[tex]MA^2+MB^2+MC^2 =\overrightarrow{MA}^2+\overrightarrow{MB}^2+\overrightarrow{MC}^2\\=(\overrightarrow{MG}+\overrightarrow{GA})^2+(\overrightarrow{MG}+\overrightarrow{GB})^2+(\overrightarrow{MG}+\overrightarrow{GC})^2\\=3MG^2+(GA^2+GB^2+GC^2)+2\overrightarrow{MG}(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC})\\=3MG^2+(GA^2+GB^2+GC^2)[/tex]
Để [tex]MA^2+MB^2+MC^2 \Rightarrow MG[/tex] đặt min
MG đạt min thì MG vuông góc với BC
[tex]\frac{S_{ABM}}{S_{ABC}}=\frac{\frac{1}{2}AB.BM}{\frac{1}{2}AB.BC}=\frac{BM}{BC}=\frac{BM}{2BK}=\frac{1}{2}.\frac{BG}{BH}=\frac{1}{2}.\frac{2}{3}=\frac{1}{3}[/tex]