Em sẽ sử dụng cái này ạ, mặc dù em làm hơi dài
Trong mp' $(SAC)$, từ $A$ kẻ $AC' \perp SC( C' \in SC)$
$=> AC' \subset (P)$.
Trong mp' $(SBC)$, từ $C'$ vẽ $B'C' \perp SC(B' \in SB)=> B' \in (P)$.
Gọi $AC' \cap SH=K$, kéo dài $B'K$ thì $B'K \cap SD=D'$.
Ta cần tính $V_{S.AB'C'D'}$.
$AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=\sqrt{2}.a$
$=>HC=AH= \frac{\sqrt{2}a}{2}$.
$=> SC=\sqrt{SH^2+HC^2}=\sqrt{a^2+(\frac{\sqrt{2}a}{2})^2}=\frac{\sqrt{6}.a}{2}$
Áp dụng định lí cos: $cos \widehat{ASC}=\frac{SA^2+SC^2-AC^2}{2.SA.SC}=\frac{2.(\frac{\sqrt{6}.a}{2})^2-(\sqrt{2}.a)^2}{2.(\frac{\sqrt{6}.a}{2})^2}=\frac{1}{3}$
$=> SC'=SA.cos \widehat{ASC}=\frac{\sqrt{6}.a}{2}.\frac{1}{3}=\frac{\sqrt{6}.a}{6}$.
Ta có: $1+\frac{\frac{\sqrt{6}.a}{2}}{\frac{\sqrt{6}.a}{6}}=\frac{SB}{SB'}+\frac{SD}{SD'}$
$=> \frac{SB}{SB'}+\frac{SD}{SD'}=4$.
$\Delta SC'B'=\Delta SC'D'(g-c-g)$
$=> SB'=SD'$
$=> \frac{SB}{SB'}=\frac{SD}{SD'}=2=> \frac{SB'}{SB}=\frac{SD'}{SD}=\frac{1}{2}$
Ta có: $\frac{SC'}{SC}=\frac{1}{3}.$
$V_{S.ABCD}=\frac{1}{3}.a.a^2=\frac{1}{3}.a^3$
$=> V_{S.AB'C'D'}=\frac{1.\frac{1}{3}.\frac{1}{2}.\frac{1}{2}}{4}.(1+3+2+2).\frac{1}{3}.a^3=\frac{a^3}{18}$