Cho x>0 thỏa mãn x^2+1/x^2=7.
Tính F=x^3+1/x^3
Tính S=x^5+1/x^5
Ta có: [tex]x^2+\frac{1}{x^2}=7\Leftrightarrow \left ( x+\frac{1}{x} \right )^2=9\Rightarrow x+\frac{1}{x}=3[/tex] do x>0
[tex]\Rightarrow \left ( x+\frac{1}{x} \right )^3=27\Leftrightarrow x^3+3\left ( x+\frac{1}{x} \right )+\frac{1}{x^3}=27\Rightarrow x^3+\frac{1}{x^3}=18[/tex]
Xét [tex]\left ( x+\frac{1}{x} \right )\left ( x^4+\frac{1}{x^4} \right )=x^5+x^3+\frac{1}{x^5}+\frac{1}{x^3}=x^5+\frac{1}{x^5}+18[/tex]
Mặt khác, [tex]\left ( x+\frac{1}{x} \right )\left ( x^4+\frac{1}{x^4} \right )=\left ( x+\frac{1}{x} \right )\left [ \left ( x^2+\frac{1}{x^2} \right )^2-2 \right ]=3(7^2-2)=141[/tex]
[tex]\Leftrightarrow x^5+\frac{1}{x^5}=141-18=123[/tex]