Tính:
A=(1/1640-1/2).(1/1640-1/6).(1/1640-1/12)....(1/1640-1/9900)
$ A = \left ( \frac{1}{1640} - \frac{1}{2} \right )\left ( \frac{1}{1640} - \frac{1}{6} \right )\left ( \frac{1}{1640} - \frac{1}{12} \right )...\left ( \frac{1}{1640} - \frac{1}{9900} \right ) \\ = \left ( \frac{1}{1640} - \frac{1}{1 . 2} \right )\left ( \frac{1}{1640} - \frac{1}{2 . 3} \right )\left ( \frac{1}{1640} - \frac{1}{3 . 4} \right )...\left ( \frac{1}{1640} - \frac{1}{99 . 100} \right ) \\ = \left ( \frac{1}{1640} - \frac{1}{1 . 2} \right )\left ( \frac{1}{1640} - \frac{1}{2 . 3} \right )\left ( \frac{1}{1640} - \frac{1}{3 . 4} \right )...\left ( \frac{1}{1640} - \frac{1}{40 . 41} \right )...\left ( \frac{1}{1640} - \frac{1}{99 . 100} \right ) \\ = \left ( \frac{1}{1640} - \frac{1}{1 . 2} \right )\left ( \frac{1}{1640} - \frac{1}{2 . 3} \right )\left ( \frac{1}{1640} - \frac{1}{3 . 4} \right )...0...\left ( \frac{1}{1640} - \frac{1}{99 . 100} \right ) \\ = 0 $