tính nguyên hàm sau:
(1/sinx+cosx)dx các bạn giúp mình nhé thanks
[laTEX]sinx+cosx = \sqrt{2}.sin(x+\frac{\pi}{4}) \\ \\ I = \int \frac{dx}{\sqrt{2}.sin(x+ \frac {\pi}{4} ) } \\ \\ I = \int \frac{sin(x+\frac{\pi}{4})dx}{\sqrt{2}.sin^2(x+ \frac{ \pi}{4} ) } \\ \\ I = \int \frac{sin(x+\frac{\pi}{4})dx}{\sqrt{2}.(1-cos^2(x+\frac{\pi}{4})) } \\ \\ u = cos(x+\frac{\pi}{4}) \Rightarrow du = - sin(x+\frac{\pi}{4})dx \\ \\ I = -\frac{1}{\sqrt{2}}\int \frac{du}{1-u^2} \\ \\ I = -\frac{1}{2\sqrt{2}}\int (\frac{1}{1-u}+\frac{1}{1+u})du \\ \\ I = -\frac{1}{2\sqrt{2}} (ln|u+1| - ln|1-u|) \\ \\ I = \frac{1}{2\sqrt{2}} ln|\frac{u-1}{u+1}| = \frac{1}{2\sqrt{2}} ln|\frac{cos(x+\frac{\pi}{4}) -1}{cos(x+\frac{\pi}{4}) +1}| +C[/laTEX]