1,
ap dung quy tac Lôpitan !
[TEX]\lim_{x\to x_0} \frac {f(x)}{x-x_0}=f'_{x_0}[/TEX]
[TEX]\lim_{x\to 1}(\frac {2011}{1-x^{2011}}-\frac{2012}{1-x^2012})[/TEX]
\Leftrightarrow [TEX]\lim_{x\to 1}(\frac{\frac{2011}{x-1}}{\frac{1-x^{2011}}{x-1}})-[/TEX][TEX]\lim_{x\to 1}(\frac{\frac{2012}{x-1}}{\frac{1-x^{2012}}{x-1}})[/TEX]
-->[TEX]\lim_{x\to 1}(\frac{\frac{2011}{x-1}}{\frac{1-x^{2011}}{x-1}})=[/TEX]
[TEX]\frac{f'{2011}}{f'(1-x^{2011})[/TEX] tại [TEX]x_0=1[/TEX] = [TEX]-2011^2[/TEX]
tuong tu voi
[TEX]\lim_{x\to 1}(\frac{\frac{2012}{x-1}}{\frac{1-x^{2012}}{x-1}})[/TEX]
[TEX]=-2012^2[/TEX]
----> [TEX]\lim =-2011^2+2012^2=4023 [/TEX]
không biết có đúng không?