Ta có:[tex]a=\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=\frac{\frac{x^4-1}{x^2}}{\frac{x^4+1}{x^2}}=\frac{x^4-1}{x^4+1}\Rightarrow x^4-1=ax^4+a\Leftrightarrow (a-1)x^4=-a-1\Rightarrow x^4=\frac{a+1}{1-a}[/tex]
Thế vào M ta có:[tex]M=\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}}=\frac{\frac{1+a}{1-a}-\frac{1-a}{1+a}}{\frac{1+a}{1-a}+\frac{1-a}{1+a}}=\frac{\frac{(a+1)^2-(a-1)^2}{-(a-1)(1+a)}}{\frac{(a+1)^2+(a-1)^2}{(1-a)(a+1)}}=\frac{4a}{2a^2+2}=\frac{2a}{a^2+1}[/tex]