tính giúp mình tích phân này với

J

jet_nguyen

Bài 1:
$$I=\int^2_1 \dfrac{2x}{x+\sqrt{x^2-1}}dx$$$$=\int^2_1 \dfrac{2x(x-\sqrt{x^2-1})}{(x+\sqrt{x^2-1})(x-\sqrt{x^2-1})}dx$$$$=\int^2_1 2x(x-\sqrt{x^2-1})dx$$$$=\int^2_1 2x^2-\int^2_1 2x\sqrt{x^2-1})dx$$$$=\dfrac{2}{3}x^3\bigg|^2_1-\int^2_1 \sqrt{x^2-1}dx^2$$$$=\dfrac{2}{3}x^3-\dfrac{\sqrt{(x^2-2)^3}}{3}\bigg|^2_1$$
 
C

canhcutndk16a.

[TEX]I = \int_{1}^{2}\frac{2x}{x+\sqrt{x^2-1}}dx = \int_{1}^{2}\frac{2x.(x-\sqrt{x^2-1})}{x^2-x^2+1}dx = \int_{1}^{2}2x^2-2x.\sqrt{x^2-1})dx [/TEX]

\Leftrightarrow [TEX]I=\frac{2x^3}{3}/^2_1-\int_{1}^{2}2x.\sqrt{x^2-1}dx =\frac{14}{3}-\int_{1}^{2}2x.\sqrt{x^2-1}dx [/TEX]

Đặt[TEX]\sqrt{x^2-1}=t \Rightarrow x^2-1=t^2 \Rightarrow xdx=tdt[/TEX]

\Rightarrow[TEX]\int_{1}^{2}2x.\sqrt{x^2-1}dx = \int_{0}^{\sqrt{3}}2t^2dt =\frac{2t^3}{3}/^{\sqrt{3}}_0=2\sqrt{3}[/TEX]

\Rightarrow[TEX]I=\frac{14}{3}-2\sqrt{3}[/TEX]
 
J

jet_nguyen

Bài 2:
$$I = \int_{0}^{2}\dfrac{e^x(1+x)-e^x}{(x+1)^2}dx= \int_{0}^{2}\dfrac{e^x}{x+1}dx- \int_{0}^{2}\dfrac{e^x}{(x+1)^2}dx$$ Đặt:
$$I_1= \int_{0}^{2}\dfrac{e^x}{x+1}dx,I_2=-\int_{0}^{2}\dfrac{e^x}{(x+1)^2}dx$$Ta có:
$$I_2= -\int_{0}^{2}\dfrac{e^x}{(x+1)^2}dx=\int_{0}^{2}e^xd\left(\dfrac{1}{x+1}\right)=\dfrac{e^x}{x+1}\bigg|^2_0-\int_{0}^{2}\dfrac{e^x}{x+1}dx=\dfrac{e^x}{x+1} \bigg|^2_0-I_1$$ Vậy:
$$I=I_1+I_2=\dfrac{e^x}{x+1}\bigg|^2_0$$
 
Top Bottom