mình giúp bạn nhé
Mình có cách này hơi lạ một tí mặc dù hơi dài
Ta có
[TEX]\frac{cosx}{sinx+cosx}=\frac{1}{\sqrt{2}}.\frac{cosx}{sin(x+\frac{\pi}{4})}[/TEX]
[TEX]= \frac{1}{\sqrt{2}}.\frac{cos[(x+\frac{\pi}{4})-\frac{\pi}{4}]}{sin(x+\frac{\pi}{4})}[/TEX]
[TEX]=\frac{1}{\sqrt{2}}.\frac{cos(x+\frac{\pi}{4})cos(\frac{\pi}{4})-sin(x+\frac{\pi}{4})sin(\frac{\pi}{4})}{sin(x+ \frac{\pi}{4})} [/TEX]
[TEX]=\frac{1}{2}\frac{cos(x+ \frac{\pi}{4})}{sin(x+\frac{\pi}{4})}- \frac{1}{2}[/TEX]
Nên
[TEX]\int_{}^{}\frac{cosx}{sinx+cosx}dx[/TEX]
[TEX]= \int_{}^{}\frac{1}{2}\frac{cos(x+ \frac{\pi}{4})}{sin(x+\frac{\pi}{4})}dx - \frac{1}{2}\int_{}^{} dx[/TEX]
[TEX]=ln|sin(x+ \frac{\pi}{4})| - \frac{1}{2}x+C [/TEX]