Tính giới hạn

X

xuanquynh97

Last edited by a moderator:
N

nguyenbahiep1

Tìm lim
1) $\lim(\sqrt{3n-1}-\sqrt{2n-1}) = +\infty$

2) $\lim\frac{1}{\sqrt{n+2}-\sqrt{n+1}} = \lim (\sqrt{n+2}+\sqrt{n+1}) = +\infty$

3) $\lim(\sqrt{2n+3}-\sqrt{n+1}) = +\infty $

4) $\lim(\sqrt{n^2-n+3}+n) = +\infty$

5) $\lim(\sqrt{a+n}-\sqrt{n}) = \lim \frac{a}{\sqrt{a+n}+\sqrt{n}} = 0 $

6) $\lim(\sqrt{n^2+2n+3}-\sqrt[3]{n^2-n^3} = +\infty $
 
X

xuanquynh97

Tìm lim
1) $\lim(\sqrt{3n-1}-\sqrt{2n-1})$ = +\infty

2) $\lim\frac{1}{\sqrt{n+2}-\sqrt{n+1}} = \lim (\sqrt{n+2}+\sqrt{n+1})$ = +\infty

3) $\lim(\sqrt{2n+3}-\sqrt{n+1})$ = +\infty

4) $\lim(\sqrt{n^2-n+3}+n)$ = +\infty

5) $\lim(\sqrt{a+n}-\sqrt{n}) = \lim \frac{a}{\sqrt{a+n}+\sqrt{n}}$ = 0

6) $\lim(\sqrt{n^2+2n+3}-\sqrt[3]{n^2-n^3}$ = +\infty
cho em hỏi sao mấy cái căn thức lại có lim=+\infty với 0 thế à thậy .................
 
X

xuanquynh97

Tìm lim
1) $\lim(\sqrt{3n-1}-\sqrt{2n-1})$ = +\infty

2) $\lim\frac{1}{\sqrt{n+2}-\sqrt{n+1}} = \lim (\sqrt{n+2}+\sqrt{n+1})$ = +\infty

3) $\lim(\sqrt{2n+3}-\sqrt{n+1})$ = +\infty

4) $\lim(\sqrt{n^2-n+3}+n)$ = +\infty

5) $\lim(\sqrt{a+n}-\sqrt{n})$ = \lim\frac{a}{\sqrt{a+n}+\sqrt{n}}$ = 0

6) $\lim(\sqrt{n^2+2n+3}-\sqrt[3]{n^2-n^3})$ = +\infty
Làm giúp em bài này luôn ạ
$\lim(\sqrt[3]{(1+n)^2}-\sqrt[3]{(n-1)^2}$
 
Last edited by a moderator:
N

nguyenbahiep1

cho em hỏi sao mấy cái căn thức lại có lim=+\infty với 0 thế à thậy .................

ví du:

[laTEX]L = \lim(\sqrt{3n-1}-\sqrt{2n-1}) = lim \sqrt{n}(\sqrt{3 -\frac{1}{n}} - \sqrt{2-\frac{1}{n}}) \\ \\ \begin{cases} lim \sqrt{n} = +\infty \\ lim(\sqrt{3 -\frac{1}{n}} - \sqrt{2-\frac{1}{n}}) = \sqrt{3}- \sqrt{2} > 0 \end{cases} \\ \\ \\ \Rightarrow L = +\infty[/laTEX]
 
Top Bottom