$A=\dfrac{1+4x}{1+\sqrt{1+4x}} + \dfrac{1-4x}{1-\sqrt{1-4x}}$
$=\dfrac{(1+4x)(1-\sqrt{1+4x})}{(1-\sqrt{1+4x})(1+\sqrt{1+4x})}+ \dfrac{(1-4x)(1+\sqrt{1-4x})}{(1-\sqrt{1-4x})(1+\sqrt{1-4x})}$
$=\dfrac{(1+4x)(1-\sqrt{1+4x})}{-4x}+\dfrac{(1-4x)(1+\sqrt{1-4x})}{4x}$
$=\dfrac{-(1+4x)(1-\sqrt{1+4x})+(1-4x)(1+\sqrt{1-4x})}{4x}$
$=\dfrac{(4x+1)\sqrt{4x+1}-(4x-1)\sqrt{1-4x}-8x}{4x}$
$=\dfrac{\sqrt{(4x+1)}^3+\sqrt{(1-4x)}^3}{4x}-2$
Đặt $P=\sqrt{(4x+1)}^3+\sqrt{(1-4x)}^3$
$\Longrightarrow P^2=(4x+1)^3+(1-4x)^3+2\sqrt{[(4x+1)(1-4x)]^3}=2+96x^2+2\sqrt{(1-16x^2)^3}=2+96.\dfrac{2}{81}+2\sqrt{(1-16.\dfrac{2}{81})^3}=\dfrac{3872}{729}$
$\Longrightarrow P=\dfrac{44\sqrt{2}}{27}$
$\Longrightarrow A=\dfrac{P}{4x}-2=\dfrac{5}{3}$