Ta có: [tex]\frac{x^2+y^2}{xy}=\frac{10}{3}\\ \Leftrightarrow \frac{x}{y}+\frac{y}{x}=\frac{10}{3}[/tex]
Đặt [tex]t=\frac{x}{y}>0[/tex]
Suy ra [tex]t+\frac{1}{t}=\frac{10}{3}\\ \Leftrightarrow 3t+\frac{3}{t}=10\\ \Leftrightarrow 3t^2-10t+3=0\\ \Leftrightarrow (t-3)(3t-1)=0\\ \Leftrightarrow t=3\vee t=\frac{1}{3}(t/m)[/tex]
Ta có: [tex]B=\frac{2x-3y}{2x+3y}=\frac{2\frac{x}{y}-3}{2\frac{x}{y}+3}=\frac{2t-3}{2t+3}(y>0)[/tex]
Nếu [tex]t=3\Rightarrow B=\frac{2.3-3}{2.3+3}=\frac{1}{3}[/tex]
Nếu [tex]t=\frac{1}{3}\Rightarrow B=\frac{\frac{2}{3}-3}{\frac{2}{3}+3}=\frac{-7}{11}[/tex]
Vậy: ...