Cho x, y, z khác 0, [tex]x^{3} + y^{3} + z^{3} = 3xyz[/tex]
Tính giá trị biểu thức :
[tex]A = (1+\frac{x}{y}). (1+\frac{y}{z}).(1+\frac{z}{x})[/tex]
Ta có:
x^{3} + y^{3} + z^{3} = 3xyz
[tex]\Leftrightarrow (x+y)^{3}-3xy(x+y)+z^3=3xyz[/tex]
[tex]\Leftrightarrow (x+y+z)^3-3xy(x+y)-3(x+y)z(x+y+z)=3xyz[/tex]
[tex]\Leftrightarrow (x+y+z)^3-3xy(x+y)-3(x+y)z(x+y+z)-3xyz=0[/tex]
[tex]\Leftrightarrow (x+y+z)^3-3xy(x+y+z)-3(yz+zx)(x+y+z)=0[/tex]
[tex]\Leftrightarrow (x+y+z)[(x+y+z)^2-3xy-3yz-3zx]=0[/tex]
[tex]\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0\Leftrightarrow (x+y+z)\frac{1}{2}(2x^2+2y^2+2z^2-2xy-2yz-2zx)=0[/tex]
[tex]\Leftrightarrow (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]=0[/tex]
+, Th1: x+y+z =0 [tex]\rightarrow A = (1+\frac{x}{y}). (1+\frac{y}{z}).(1+\frac{z}{x})\Leftrightarrow A=(\frac{x+y}{y})(\frac{y+z}{z})(\frac{x+z}{x})=\frac{-z}{y}.\frac{-y}{x}.\frac{-x}{z}=-1[/tex]
+, TH2: Bạn tự chứng minh được x=y=z ---> A=8