Ta có [tex]\left\{\begin{matrix} x\sqrt{1-y^2}\leq \frac{x^2-y^2+1}{2} & & & \\ y\sqrt{1-z^2}\leq \frac{y^2-z^2+1}{2}& & & \\ z\sqrt{1-x^2} \leq \frac{z^2-x^2+1}{2}& & & \end{matrix}\right.[/tex]
[tex]=>x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\leq \frac{3}{2}[/tex]
Mà [tex]x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\doteq \frac{3}{2}[/tex]
Dấu "=" xảy ra khi [tex]\left\{\begin{matrix} x=\sqrt{1-y^2 }& & & \\ y=\sqrt{1-z^2}& & & \\ z=\sqrt{1-x^2} & & & \end{matrix}\right.[/tex]
[tex]<=>\left\{\begin{matrix} x^2+y^2=1 & & & \\ y^2+z^2=1 & & & \\ z^2+x^2=1 & & & \end{matrix}\right.[/tex]
[tex]<=>2(x^2+y^2+z^2)=3<=>x^2+y^2+z^2=\frac{3}{2}[/tex]