[TEX]\frac{x}{(\sq[TEX][/TEX]rt{x}+\sqrt{y})(1-\sqrt{y})} +\frac{y}{(\sqrt{x}+\sqrt{y})(1+\sqrt{x})} + \frac{xy}{(\sqrt{x}+1)(1-\sqrt{y})}[/TEX]
[TEX]\frac{x}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})} +\frac{y}{(\sqrt{x}+\sqrt{y})(1+\sqrt{x})} + \frac{xy}{(\sqrt{x}+1)(1-\sqrt{y})}[/TEX]
[TEX]=\frac{x(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}+\sqrt{y})(1-\sqrt{y})} +\frac{y(1-\sqrt{y})}{(\sqrt{x}+\sqrt{y})(1+\sqrt{x})(1-\sqrt{y})} + \frac{xy(\sqrt{x}+\sqrt{y})}{(\sqrt{x}+1)(1-\sqrt{y})} [/TEX]
[TEX]= \frac{x\sqrt{x}+x+y-y\sqrt{y}+xy \sqrt{x }+xy\sqrt{y}}{(\sqrt{x}+1)(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}[/TEX]
[TEX]= \frac{(x\sqrt{x}+x)+(y+xy \sqrt{x })+(xy\sqrt{y})-y\sqrt{y}}{(\sqrt{x}+1)(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}[/TEX]
[TEX]= \frac{(\sqrt{x}+1)[x+y(x-\sqrt{x}+1)+y\sqrt{y}(\sqrt{x}-1)]}{(\sqrt{x}+1)(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}[/TEX]
[TEX]= \frac{x+y(x-\sqrt{x}+1)+y\sqrt{y}(\sqrt{x}-1)}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}[/TEX]
[TEX]= \frac{x+xy-y\sqrt{x}+y+y\sqrt{xy}-y\sqrt{y}}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}[/TEX]
[TEX]=\frac{y(\sqrt{x}+1)(\sqrt{x}+\sqrt{y})+x+y}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}[/TEX]