Đặt [tex]a=\sqrt[3]{3+\sqrt{9+\sqrt{\frac{125}{27}}}}+\sqrt[3]{3-\sqrt{9+\sqrt{\frac{125}{27}}}}\\\Leftrightarrow a=\sqrt[3]{3+\sqrt{9+\sqrt{\frac{125}{27}}}}-\sqrt[3]{-3+\sqrt{9+\sqrt{\frac{125}{27}}}}\\\Rightarrow a^3=3+\sqrt{9+\sqrt{\frac{125}{27}}}-\left ( - 3+\sqrt{9+\sqrt{\frac{125}{27}}}\right )-3.\sqrt[3]{3+\sqrt{9+\sqrt{\frac{125}{27}}}}.\sqrt[3]{-3+\sqrt{9+\sqrt{\frac{125}{27}}}}.\left ( \sqrt[3]{3+\sqrt{9+\sqrt{\frac{125}{27}}}}-\sqrt[3]{-3+\sqrt{9+\sqrt{\frac{125}{27}}}} \right )\\\Rightarrow a^3=6-3\sqrt[3]{\left ( 9+\sqrt{\frac{125}{27}} \right )-9} .a\\\Leftrightarrow a^3=6-\sqrt{15}a[/tex]
Nghiệm khá lẻ, [tex]a=\frac{(9+\sqrt{81+5\sqrt{15}})^{\frac{2}{3}}-\sqrt[6]{3}.\sqrt{5}}{\sqrt[3]{3(9+\sqrt{81+5\sqrt{15}})}}[/tex]
Mình nghĩ nếu đề là tính [TEX]\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\frac{125}{27}}}[/TEX] sẽ hợp lí hơn.