Tính giá trị biểu thức

T

thupham22011998

Last edited by a moderator:
E

eye_smile

Ta có: ${a^2}\left( {b + c} \right) + {b^2}\left( {a + c} \right) + {c^2}\left( {a + b} \right) + 2abc = 0$
$ \leftrightarrow \left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) = 0$
Do $a,b,c$ có vai trò bình đẳng nên giả sử $a+b=0$
$ \to a = - b$
$ \to {a^{2013}} = - {b^{2013}}$
$ \to {a^{2013}} + {b^{2013}} + {c^{2013}} = - {b^{2013}} + {b^{2013}} + {c^{2013}} = {c^{2013}} = 1$
$ \to c = 1$
$ \to Q = \dfrac{1}{{{a^{2013}}}} + \dfrac{1}{{{b^{2013}}}} + \dfrac{1}{{{c^{2013}}}} = \dfrac{1}{{ - {b^{2013}}}} + \dfrac{1}{{{b^{2013}}}} + \dfrac{1}{{{c^{2013}}}} = \dfrac{{ - 1}}{{{b^{2013}}}} + \dfrac{1}{{{b^{2013}}}} + \dfrac{1}{{{c^{2013}}}} = 0 + \dfrac{1}{{{c^{2013}}}} = \dfrac{1}{{{c^{2013}}}} = 1$
 
Last edited by a moderator:
Top Bottom