C
chua1cot
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
[TEX]L=\lim_{x\to-\infty}(\sqrt{x^2-2x} + \sqrt[3]{x^3+x^2})[/TEX]
[TEX]=\lim_{x\to-\infty}(\sqrt{x^2-2x} + x + \sqrt[3]{x^3+x^2} - x)[/TEX]
[TEX]=\lim_{x\to-\infty}(\sqrt{x^2-2x}+x) + (\lim_{x\to-\infty}\sqrt[3]{x^3+x^2}-x)[/TEX]
[TEX]=G1 + G2[/TEX]
[TEX]G1= \lim_{x\to-\infty}(\sqrt{x^2-2x}+x)[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{(\sqrt{x^2-2x}+x)(\sqrt{x^2-2x}-x)}{\sqrt{x^2-2x}-x}[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{-2x}{\sqrt{x^2-2x}-x}[/TEX]
[TEX]= \lim_{x\to-\infty}\frac{-2x}{(-x)(\sqrt{1-2/x}+1)}[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{2}{\sqrt{1-2/x}+1} = 1[/TEX]
[TEX]+G2 =\lim_{x\to-\infty}\sqrt[3]{x^3+x^2}-x[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{x^3 +x^2-x^3}{\sqrt[3]{(x^3+x^2)}^2+x.\sqrt[3]{x^3+x^2}+x^2}[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{x^2}{\sqrt[3]{(x^3+x^2)}^2+x\sqrt[3]{x^3+x^2}+x^2[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{1}{\sqrt[3]{(1+1/x)}^2+\sqrt[3]{1+1/x}+1}[/TEX]
[TEX]=1/3[/TEX]
[TEX]=>L = 1+1/3 =4/3[/TEX]
[TEX]=\lim_{x\to-\infty}(\sqrt{x^2-2x} + x + \sqrt[3]{x^3+x^2} - x)[/TEX]
[TEX]=\lim_{x\to-\infty}(\sqrt{x^2-2x}+x) + (\lim_{x\to-\infty}\sqrt[3]{x^3+x^2}-x)[/TEX]
[TEX]=G1 + G2[/TEX]
[TEX]G1= \lim_{x\to-\infty}(\sqrt{x^2-2x}+x)[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{(\sqrt{x^2-2x}+x)(\sqrt{x^2-2x}-x)}{\sqrt{x^2-2x}-x}[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{-2x}{\sqrt{x^2-2x}-x}[/TEX]
[TEX]= \lim_{x\to-\infty}\frac{-2x}{(-x)(\sqrt{1-2/x}+1)}[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{2}{\sqrt{1-2/x}+1} = 1[/TEX]
[TEX]+G2 =\lim_{x\to-\infty}\sqrt[3]{x^3+x^2}-x[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{x^3 +x^2-x^3}{\sqrt[3]{(x^3+x^2)}^2+x.\sqrt[3]{x^3+x^2}+x^2}[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{x^2}{\sqrt[3]{(x^3+x^2)}^2+x\sqrt[3]{x^3+x^2}+x^2[/TEX]
[TEX]=\lim_{x\to-\infty}\frac{1}{\sqrt[3]{(1+1/x)}^2+\sqrt[3]{1+1/x}+1}[/TEX]
[TEX]=1/3[/TEX]
[TEX]=>L = 1+1/3 =4/3[/TEX]
Last edited by a moderator: