$1)(\sqrt{14}+\sqrt{6})\sqrt{5-\sqrt{21}}=(\sqrt{7}+\sqrt{3})\sqrt{10-2\sqrt{21}}
\\=(\sqrt{7}+\sqrt{3})\sqrt{(\sqrt{7}-\sqrt{3})^2}=(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})=7-3=4
\\2)(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}=\dfrac{1}{2}(8+2\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}
\\=\dfrac{1}{2}(\sqrt{5}+\sqrt{3})^2(\sqrt{5}-\sqrt{3}).\sqrt{(\sqrt{5}-\sqrt{3})^2}=\dfrac{1}{2}(\sqrt{5}+\sqrt{3})^2(\sqrt{5}-\sqrt{3})^2
\\=\dfrac12(5-3)=\dfrac12.2=1
\\3)A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}
\\\Rightarrow \sqrt{2}A=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}
\\=\sqrt{(\sqrt{5}+\sqrt{3})^2}+\sqrt{(\sqrt{5}-\sqrt{3})^2}-2\sqrt{(\sqrt{5}-1)^2}
\\=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\sqrt{5}+2
\\=2
\\\Rightarrow A=\sqrt 2
\\4)B=5(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\dfrac{5}{2}})^2+(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\dfrac{5}{2}})
\\\Rightarrow 2B=5(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\sqrt{5})^2+\sqrt{2}(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}-\sqrt{5})
\\=5(\sqrt{3}+1+\sqrt{5}-1-\sqrt{5})^2+\sqrt{2}(\sqrt{3}-1+\sqrt{5}+1-\sqrt{5})
\\=15+\sqrt{6}
\\\Rightarrow B=\dfrac{15+\sqrt 6}{2}$