1)$cos(\pi+x)=-cosx$
=>cosx=1/4
x thuộc (3pi/2 ; 2pi)
=>sinx<0
$sin^2x+cos^2x=1$ =>sinx=$-\frac{\sqrt{15}}{4}$
sin2x=2sinx.cosx=$\frac{-\sqrt{15}}{8}$
$tan(\frac{\pi}{4}-x)=\frac{cosx-sinx}{sinx+cosx}$ thay số vào tính ...
2)[tex]\frac{1-(sinx+cosx)^2}{-cotx+sinx.cosx}=\frac{-2sinxcosx}{\frac{-cosx+sin^2x.cosx}{sinx}}=\frac{-2sin^2x}{-1+sin^2x}=2tan^2x[/tex]
[tex]sin^2x+sin^2(\frac{\pi}{3}-x)+sinx.sin(\frac{\pi}{3}-x)=sin^2x+(\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx)^2+sinx(\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx)=sin^2x+\frac{3}{4}cos^2x+\frac{1}{4}sin^2x-\frac{\sqrt{3}}{2}sinx.cosx+\frac{\sqrt{3}}{2}sinx.cosx-\frac{1}{2}sin^2x=\frac{3}{4}(sin^2x+cos^2x)=\frac{3}{4}[/tex]