xét khai triển $(x-9)^{2n}=C^0_{2n}.x^{2n}.9^0-C^1_{2n}.x^{2n-1}.9^1+...-C_{2n}^{2n-1}.x.9^{2n-1}+C_{2n}^{2n}.9^{2n}$
$(x+9)^{2n}=C^0_{2n}.x^{2n}.9^0+C^1_{2n}.x^{2n-1}.9^1+...+C_{2n}^{2n-1}.x.9^{2n-1}+C_{2n}^{2n}.9^{2n}$
=>$(x+9)^{2n}-(x-9)^{2n}=2(C^1_{2n}.x^{2n-1}.9+C_{2n}^3.x^{2n-3}.9^3+...+C_{2n}^{2n-1}.x.9^{2n-1})$
thay x=1
=>$10^{2n}-8^{2n}=2F$
=>F=...