Toán 12 Tính biến thiên

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,478
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
1. [tex]y=5x^4-10x^3+10x^2-5x+1\Rightarrow y'=20x^3-30x^2+20x-5=5(4x^3-6x^2+4x-1)=5(2x-1)(2x^2-2x+1)[/tex]
[TEX] \begin{array}{c|ccccc} x & -\infty & & \frac{1}{2} & & +\infty \\ \hline y' & & - & 0 & + & \\ \hline y & +\infty & & & & +\infty \\ & & \searrow & & \nearrow & \\ & & & 0 & & \end{array} [/TEX]
2. [tex]y'=\frac{2\sqrt{x^2-x+1}+2x-1}{4\sqrt{x^2-x+1}.\sqrt{x+\sqrt{x^2-x+1}}} > 0[/tex]
[tex]\lim_{x\rightarrow -\infty}\sqrt{x+\sqrt{x^2-x+1}}=\lim_{x\rightarrow -\infty}\sqrt{\frac{1-x}{\sqrt{x^2-x+1}-x}}=\lim_{x\rightarrow -\infty}\sqrt{\frac{-\frac{1}{x}+1}{\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}+1}}=\sqrt{\frac{1}{2}}[/tex]
[tex]\lim_{x\rightarrow +\infty}\sqrt{x+\sqrt{x^2-x+1}}=+\infty[/tex]
[TEX] \begin{array}{c|ccc} x & -\infty & & +\infty \\ \hline y' & & + \\ \hline & & & +\infty \\ & & \nearrow & \\ y & \frac{\sqrt{2}}{2} & & \end{array} [/TEX]
 
Top Bottom